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NATIONAL ADVISORY COMMITIEE FOR AFRONAUTICS
TECHNICAL NOTE 3546

EXPLORATORY INVESTIGATION OF BOUNDARY-IAYER TRANSITION
ON A HOLLOW CYLINDER AT A MACH NUMBER OF 6.9

By Mitchel H., Bertram
SUMMARY

The Reynolds number for transition on the outside of a hollow
cylinder with heat transfer from the boundary layer to the wall has been
investigated at a Mach number of 6.9 in the ILangley 1l-inch hypersonic
tunnel. The type of boundary layer was determined from impact-pressure
surveys. When only the results obtalned in the portion of the nozzle
where surveys indicated the Mach number to be essentially constant were
considered, the Reynolds number for the start of transition was

between 4 X 106 and 6 X 106. From a correlation of results obtained
from various sources at lower Mach numbers (in the range 2.0 to 4.5),
leading-edge thickness and free-stream Reynolds number per inch appear
to be important considerations in flat-plate transition results. At a
given Mach number, it appears that the Reynolds number based on leading-
edge thickness is an important parameter that must be considered in com-
-parisons of flat-plate transition data from various installations.

INTRODUCTION

The importance of obtaining extensive regions of laminar flow on
surfaces in very high-speed flight does not have to be emphasized.
Certain theoretical analyses indicate a decrease in the critical Reynolds
number for transition with Mach number (ILees and Iin in refs. 1 and 2 and
Van Driest's calculations, ref. 3, based on the Lees-ILin theory). A
recent paper by Dunn and Iin (ref. 4) removes some of the limitations of
the Iees-Lin theory mainly by the inclusion of three-dimensional disturb-
ances and the demonstration that the stability characteristics can depend
on temperature fluctuations. According to this theory, at Mach numbers
between 1 and 2 three-dimensional disturbances begin to play the leading
role in many problems of practical interest, and at supersonic Mach
numbers the boundary layer can never be completely stabilized with respect
to all three-dimensional disturbances. For Mach numbers up to about 2,
however, cooling of the solid surface is found to be effective in stabi-
lizing the boundary layer. Although calculations were not made, this
general conclusion would apparently remain unchanged for Mach numbers up
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to perhaps 6; however, for Mach numbers above about 2 Dunn and ILin do
not believe their present method of numerical calculations to be adequate.

The theoretical prediction that an increase in Mach number should
decrease the stability (from the Iees-Iin theory) was substantiated to
the extent that the earlier experimental work on bodies at the lower
supersonic Mach numbers (as in a 1951 paper by Potter, ref. 5) showed
a decrease in transition Reynolds number with increasing Mach number.

An extrapolation of these early data indicated Reynolds numbers for
transition that were quite low compared with the Reynolds numbers obtained
with bodies and wings tested in the Langley 1ll-inch hypersonic tunnel

at Mach number 6.9 (for example, refs. 6 and 7). However, the models
tested in the 1l-inch hypersonic tunnel have an appreciable heat transfer
from the boundary layer to the model surface and, in addition, the
Reynolds number per unit length is considerably higher than would be
obtained by an extrapolation of Potter's data.

On the basis of experimentally determined trends, Potter in refer-
ence 8 revised his earlier observations to include the estimated effects
of factors such as wall temperature and tunnel-air density. Though
admittedly crude in application, Potter's modifications to wind-tunnel
cone-cylinder results to allow for wall-temperature and density effects
resulted in reasonable agreement with free-flight data from bodies of
revolution as compiled by Gazley in reference 9. More recent contribu-
tions have been the original work and compilations by Czarnecki and
Sinclair (refs. 10, 11, and 12) who have investigated the effects of
Mach number, body shape, heat transfer, surface roughness, and angle of
attack. Although the work of the various investigators has resulted in
some progress, there still does not exist a coherent picture of the
various factors affecting transition nor a definite idea of what the
Reynolds number for transition will be at various Mach numbers and other
varying conditions. '

The present exploratory investigation was initiated in 1951 to pro-
vide preliminary informatior on boundary-layer transition in the hyper-
sonic range. A hollow cylinder was chosen for the test configuration
because of advantages in mounting and lack of tip effects. Because the
Langley 1ll-inch hypersonic tunnel has only a short running time, the wall
temperature of the cylinder, which was initially at about room temperature,
was not controlled. The wall temperature obtained was thus a result of
the heat transfer during the run from the boundary layer on both the
inside and the outside of the cylinder. An attempt was also made to
correlate the available transition data on cylinders and flat plates by
use of nondimensional parameters involving the pressure and the leading-
edge thickness. ' '
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SYMBOLS

Mach number

exponent in power law for velocity

total pressure measured by pitot tube

supply pressure

free-stream pressure

Prandtl number

radial distance from tunnel axis (see fig. 2)
Reynolds number based on distance from leading edge

Reynolds number based on distance from leading edge to
transition location

Reynolds number based on leading-edge thickness
leading-edge thickness

absolute temperature

velocity

distance measured from cylinder leading edge, axially along
cylinder surface ’

distance normal to cylinder surface, measured from surface

nozzle coordinates (see fig. 2)

nozzle axial coordinate station giving location of cylinder
leading edge

boundary-layer thickness

angle about X axis of nozzle in Z-Y plane (see fig. 2)
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o} density

W dynamic viscosity

T time

Subscripts

* ratio of local conditions to conditions in undisturbed free
stream '

0 refers to conditions in undisturbed free stream

w refers to conditions at wall

APPARATUS AND METHODS

Tunnel and Nozzles

This investigation was conducted in the Langley 1ll-inch hypersonic
tunnel, an intermittent tumnel with running time of 70 seconds for these
tests. These tests utilized two two-dimensional nozzles both of which
provide s Mach number of slightly less than 7. The first nozzle had
contours machined from steel and was replaced after the tests had
started by a nozzle having contours constructed of Invar. Invar was
used for the contour plates of the second nozzle in order to alleviate
the deflection of the first minimum which occurred in the steel nozzle
because of differential heating of the nozzle blocks. In addition, the
nozzle was designed so that pressure gradients normal to the horizontal
plane of symmetry were a minimum.

The variation of free-stream Mach number with longitudinal distance
in the steel and in the Invar nozzle is shown in figures 1 and 2 for
time 60 seconds after the start of the test run. The center of the test
section is taken as the origin of the coordinate system. In contrast
to the steel nozzle in which the test-section Mach number changed
about 2.5 percent in the period of time from 10 to 7O seconds after the
start of the run, the Mach number in the Invar nozzle changed only 1 per-
cent during this same period of time. A description of the tunnel may
be found in reference 13 and a description of the steel nozzle and a
more complete calibration at a stagnation pressure of 25 atmospheres in
reference 1k.

Tests were conducted at supply pressureg of 25 and 33 atmospheres
(Reynolds number per inch of about 0.26 X 10° and 0.34 X 106, respec-
tively). 'The viscosity used to obtain the Reynolds numbers is based on
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the Sutherland formula:

2
TwB/ ¢ lb-sec
Mo = 0.0220 W X 10°%, ﬁ"

Pressure-fluctuation measurements were taken in the settling chamber
with a flush diaphragm gage which had a flat response to fluctuations
with a frequency from L4 to 2000 cps. The recorded fluctuations of air
pressure were approximately the same whether the gage was open to the
tunnel air or blanked off so that the tunnel air could not directly
affect the gage face (about +0.1 inch mercury at frequencies from

1000 to 2000 cps). Thus, either the frequency of the actual pressure
fluctuations was considerably greater than those to which the gage would
respond accurately or the magnitude of the fluctuations was less than the
electrical noise level of the instrumentation setup.

During these tests, the tunnel was operated at a stagnation temper-
ature of about 1,135° R, although stagnation temperatures for some runs
were as high as 1,180° R and for a few others were as low as 1,1000 R.
The air was heated by an electrical heater with Nichrome tube resistance
elements which replaced the storage heater described in references 13
and 14, Measurements of the temperature fluctuations in the settling
chamber and in the test section were made with a chromel-alumel thermo-
couple formed of No. 40 wire (0.0031-inch diam.) in series with an
adjacent thermocouple of No. 18 wire (0.04O-inch diam.) with reversed
polarity. The observed temperature fluctuations can be described
approximately as a wave with a frequency of 2 to 4 cps and an amplitude
of 5° F to 15° F upon which is superimposed another wave with a frequency
of 10 to 15 cps and an amplitude of 1° B to 2° F., The settling-chamber
and test-section measurements were in agreement as to magnitude and
approximate frequency of occurence of the fluctuations. There was no
apparent difference between the temperature fluctuation results at the
two pressure levels at which tests were run.

Models and Probes

Models.~ The models were hollow cylinders for which the diameter and
method of mounting are shown in figure 3. The cylinders were made from
seamless steel tubing machined and polished longitudinally on the outside
and cleaned on the inside, with the leading edge beveled on the inside.
The leading-edge thickness as determined by viewing the leading edge
through a shop microscope varied between 0.00l and 0.003 inch around the
leading edge.

Surface roughness was measured with a profilometer. Movement in the
longitudinal direction along the outside surface of the cylinder indicated
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a surface roughness with root-mean-square values generally of 3 micro-
inches with occasional values of 6 microinches. Lateral traverse of the
surface at right angles to the direction of the polishing indicated a
root-mean-square surface roughness of about 10 microinches. Such surface-
roughness measurements as these are highly questionable, however, in view
of the experience of Jedlicka, Wilkins, and Seiff (ref. 15, page 6) when
using such a stylus type of instrument.

One hollow cylinder had a portion of the outer surface knurled near
the leading edge. As a general description the knurling was in a diamond
pattern with the lateral dimension of the diamond about 1/32 inch and the
Jongitudinal dimension about 3/6h inch. This knurling started approxi-
mately 1/2 inch from the leading edge, covered about 2 inches of cylinder
length including a tapered portion of about l/h inch at each end, extended
above the original surface about 0.005 inch, and was indented about
0.003 inch. In the unknurled half inch of length at the leading edge the
outer surface was actually at an angle of about 0.8° exposed to the free-
stream flow; otherwise the cylinder was as described previously.

Another cylinder was tested with glass tape wrapped about a portion
of the outer surface. This tape was 0.007 inch thick and started 4 inches
behind the hollow cylinder leading. edge and extended for 1.25 inches.

Probes.- A pressure probe with a flattened tip typical of the type
used in the present tests is shown in figure 4. A number of these probes
were made for replacement purposes, as they occasionally broke in use.
The first of these probes to be made had an outside dimension of the minor
axis of about 0.015 inch. With more experience in making them, it became
practical to construct probes with minor-axis outside dimensions of
0.006 to 0.010 inch. A further reduction in this dimension was deemed
undesirable because of anticipated difficulties with pressure lag when
the probe was located close to the surface of the cylinder in a laminar
boundary layer. Some early tests were conducted with the probe formed
from unflattened 0.04kO-outside-diameter by 0.020-inside-diameter tubing.
The supporting web for this probe was unswept and considerably broader
than the web shown in figure L.

For the tests in the steel nozzle, the probes were mounted on =z

%-—inch-diameter steel tube (shown in fig.4); whereas, for the tests in

the Invar nozzle, the tube was 1/4 inch in diameter. The probe could be
located in several positions in the test section as shown in figure 3.

The pressures in the impact tube were measured by means of the
aneroid recording units described in reference 13. Most of the pressures
were measured with an error gbout 1 percent although the error in some
cases was 2 or 3 percent.
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Heating effects on models and probes, and accuracy of setting
vertical distance.- The reference setting of the probe (y = 0) was made
visually by sighting through the test section at an illuminated diffusing
screen, masked to a suitable size. The probe was moved toward the
cylinder until the light passing between the probe tip and the cylinder
was observed without magnifying aids to disappear, asnd the probe was then
backed off from the cylinder until the light could be barely observed.

At the stagnation temperature of these runs (about 675° F) there was a
relative deflection of the probe and the cylinder during the running
time. The first run in each series at a given station was used to
calibrate this relative deflection by having the operator of the traverse
mechanism keep the probe substantially fixed with relation to the cylinder
and recording the deflection indicated by the scale of the traversing
head as a function of time. In order to keep this deflection due to
heating to a minimum, the steel tube on which the probe was mounted was
shielded from the airstream as shown in figure 3. Corrections to the
initial setting were made according to the observed deflection. The
accuracy with which the operator could follow the relative deflection of
the probe and model is believed, in general, to be within 0.002 inch,
judging from a comparison of repeat runs of the deflection calibration.

Model Temperature

At the start of a run, the model has an isothermal surface with a
ratio of wall temperature to stream temperature of about 5.0. With
sufficient running time to attain equilibrium, a ratio of wall tempera-
ture to stream temperature of about 9.0 would be expected for stations
away from the leading edge with a laminar boundary layer and about 9.4
with a turbulent boundary layer.

The initial rates of change of model temperature with time dTW/dT

determined from theory for laminar and turbulent boundary layers and for
boundary layers with transition occuring at various Reynolds numbers is
shown in figure 5. Also shdwn 1s the assumed rate of change of Ty with
time used to calculate the wall temperature for the determination of
various parameters in the boundary layer from the impact pressure '
measurements. The value of dT,/dT was assumed constant throughout the

running time with no consideration given to longitudinal heat conduction.
A few experimental measurements of which the accuracy left much to be
desired indicated the assumed curve to be reasonable; although the assumed
dTW/dT is expected on the average to be too high at the more forward
stations and too low at the most rearward stations. The maximum error

in the assumed wall temperature is expected to be about 15 percent and
this deviation should not have a significant effect on the computations
for the reduction of the total-pressure ratio to velocity ratio for
present purposes.
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RESULTS AND DISCUSSION

Presented in figure 6 are the impact-pressure profiles obtained in
both the steel and the Invar nozzles 60 seconds after the start of the
tests at a Reynolds number per inch of about 0.34 X 106 (supply pressure
of 33 atmospheres). In this figure each data point represents the pres-
sure at 60 seconds from the start of one test run. These data are
summarized in table I. The theoretical curves shown in figure 6 are
those for a laminar boundary layer on a flat plate calculated by the
Crocco method as presented by Van Driest (ref. 16). The effect of
Prandtl number, wall temperature, and velocity profile shape on these
curves 1s discussed in more detail in appendix A to this paper.

If for the moment certain anomalies which appear in the data and
differences in cylinder surface condition are ignored, certain overall
results are evident. With the leading edge of the cylinder located at
about the -l1ll-inch station in the steel nozzle (figs. 6(a) and (b)),

transition is found to: occur between a Reynolds number of 4 X 106

and 6 X 106; A value of Rx = 4.1 X 106 corresponds to a Reynolds
number based on momentum thickness of about 1,720 from the measured
pressures. With the leading edge at approximately the -17-inch station
in the steel nozzle (figs. 6(b) and (d)), transition appears to occur in

general between a Reynolds number of about 6 X lO6 and 8 X 106. One set

of data from the steel nozzle at a Reynolds number of about 8 X lO6
(fig. 6(d)) with the leading edge set at the -23 inch station appears to
indicate incipient transition. Iess data were obtained in the Invar
nozzle (figs. 6(a), (b), and (d)) than in the steel nozzle, but the

data apparently do not show the large variations in profile shape with
cylinder location found in the steel nozzle.

Possible explanations for this behavior are discussed in the
following sections together with a discussion of the previously dismissed
anomalies and other factors.

Factors Influencing Transition

Effect of model location.- The preceding discussion has .implied an
effect of model location on the Reynolds numbers for transition obtained
in the steel nozzle. The cylinder leading-edge locations shown in fig-
ure 6 and table I can be associated with the Mach number (pressure)
gradients indicated by figures 1 and 2. Take the cylinder locations
shown in figure 6(b), for example; in the steel nozzle with Xp = -17
inches, the forward part of the cylinder was in a region with a con-
siderable length of negative dp/dX on the nozzle center line; whereas
with the cylinder farther downstream in the nozzle (XZE ~ -11 inches)

Fe
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there is a short length of positive dp/dX on the nozzle center line

in the leading-edge region. As previously noted, in general, the farther
upstream the location of the leading edge in the steel nozzle the higher
the transition Reynolds number appeared to be. In the Invar nozzle at
these same stations the pressure gradient on the nozzle center line is
considerably smaller. The results from the Invar nozzle do not indicate
a noteworthy effect of model location on transition.

Although other factors enter into the problem the improved Mach
number (pressure) distribution in the Invar nozzle is probably an
important reason for the decreased Reynolds number for transition observed
in this nozzle. In the Invar nozzle the model apparently did not pro-
trude into a region of relatively strong negative pressure gradient as
was the case in the steel nozzle for the model positions for which the
pressure profiles indicated the highest Reynolds number for transition.

Another consideration in the effect of model location is flow angu-
larity in the nozzle. However, at present little can be said concerning
this effect. A calibration of the steel nozzle indicates that flow angles
in the test section may be as much as 0.5° where the model surface is
located and the flow angles average to about 0.2° in this region
(ref. 14, fig. 13). With the model located at a given station in the
nozzle the effects of flow angularity would be considered to be fixed;
however, in a comparison of the results at various model locations, some
flow-angularity effects could exist. Effects of model angle of attack
would also be expected to be fixed. However, the misalignment of the
cylinder with respect to the tunnel axis was less than about 3 minutes
and the effect of such a misalignment would be expected to be negligible.

Effect of surface condition.~ The correlation of tests at the lower
supersonic Mach numbers has indicated two important parameters in the
effect of surface roughness on boundary-layer transition (refs. 10 and 15).
These are the ratio of roughness height to a characteristic boundary-
layer thickness and the ratio of molecular mean-free-path length to
roughness height; however, much concerning these effects is still specula-
tion. Consider first the taped cylinder described under the section
entitled "Models". The ratio of tape thickness to boundary-layer dis-
placement thickness was about 0.08. The ratio of tape thickness to mean
free path is about 230 in the stream, 35 at the wall, and 18 as a minimum
a little distance from the wall. Conditions at and near the wall are
expected to be the best criteris for molecular mean-free-path considera-
tions. From consideration of both boundary-layer thickness and molecular
mean free path, the tape would not be expected to have an effect and this
appears to be substantiated in figures 6(a) and 6(b).

The other variation in surface condition on the cylinders tested was
knurling near the leading edge. According to the lower speed correlations
of roughness height to boundary layer height (ratio 0.18 at start of
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knurling based on crest to mean surface height), the knurling could have
an effect on transition of the boundary layer (reference 10, figures 6
and T); however, from mean-free-path considerations it is doubtful that
such an effect would occur. Actually the data indicating what is prob-
ably the highest Reynolds number for transition (see fig. 6(d)) were
obtained on the cylinder with knurling. However, the data from the
knurled cylinder are not consistent in this regard (see fig. 6(b)).
There is the possibility that the high Reynolds number for transition
indicated in figure 6(d) is associated in part with the slight bevel
inadvertently formed on the surface at the leading edge. (See the
description of the models in a previous section.) Iee (ref. 17) found
that a 10° external bevel on a hollow cylinder, tested at Mach numbers
of 2,15 and 3.25, increased the Reynolds number for transition by 50

to 60 percent over that obtained when the outer surface was unbroken
to the leading edge; however, the external bevel in the present model
is only about 0.8°.

Effect of leading-edge thickness.- A possible cause for certain
anomalies in the transition Reynolds number (as shown in table I) is the
variation of leading-edge thickness circumferentially around the leading
edge. The following discussion forms a possible explanation for these
anomalies,

No data were obtained in the course of the present investigation
pertaining to leading-edge effects, but such effects were believed to
be a significant source of transition-point variation in the present
investigation. Because of their significance the data from other
sources are utilized and discussed at some length.

Two of the more obvious effects inherent in a finite leading-edge
thickness which can possibly affect the Reynolds number for transition
are as follows: First, temperature increases across the strong leading-
edge shock and results in an initially low value of Reynolds number per
inch; second, the pressure .is initially high but there is a negative
gradient in pressure and in surface Reynolds number per unit length, with
the pressure becoming essentially equal to stream static pressure at a
sufficient distance from the leading edge. The boundary layer is thin
near the leading edge and can therefore be affected considerably by the
disturbance due to the finite thickness of the leading edge. It appears
that the Reynolds number based on leading-edge thickness Ry is the
correct parameter to describe the effect of the leading edge on the
boundary layer. A plausible argument is that for low Reynolds numbers
per unit length or small leading-edge thicknesses, or both (low Rt),
the boundary layer quickly becomes thick enough so that the effect of the
leading-edge thickness is small; that is, the boundary layer quickly
grows out of the region where the main influence is from the strong shock
at the leading edge; whereas for larger leading-edge thicknesses high
Reynolds numbers per unit length, or both (high Rt), the boundary layer
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is thinner and is affected by the leading edge for a considerably greater
distance in terms, say, of boundary-layer thicknesses. Thus, with
Reynolds number based on undisturbed free-stream Reynolds number per
inch, the Reynolds number for transition RXT might be expected to
increase with Ri.

As the Mach number increases a third factor may become increasingly
significant. This factor is the effect of the boundary layer itself in
producing a shock and inducing a pressure gradient augmenting the effects
due to leading-edge thickness. The effect of leading-edge thickness
and boundary-layer thickness at M = 6.9 on the pressures on a flat
plate has been reported in reference 18, and these results show that
rather large increases in surface pressure with a considerable negative
pressure gradient can be ascribed to a combination of leading-edge
thickness and boundary-layer-displacement effects.

The available data from various sources (refs. 19 to 24) for the
variation in transition Reynolds number with the dimensional parameters,
Reynolds number per inch and leading-edge thickness, are shown in fig-
ure 7. The trend of the data from the various installations 1s obviously
similar whether the parameter varied is Reynolds number per unit length
or leading-edge thickness. An increase in either Reynolds number per
inch or leading-edge thickness gives an increase in the Reynolds number
for transition. These data are presented in figure 8 with the Reynolds
number for transition RXT this time plotted as a function of the

nondimensional parameter, Reynolds number based on leading-edge thick-
ness Rt. Some secondary effects are indicated by the data of Brinich
and Diaconis (ref. 24); however, in general, this set of data correlates
reasonably well. As can be seen, the increase in transition Reynolds
numbers can be quite large. This same trend is shown by results pre-
sented in figure 7 of reference 25, but sufficient quantitative data

are not available to include these test results in figure 8.

Clearly, in an endeavor to correlate the available data, certain
factors which could prevent correlation have been neglected; among
these are the turbulence level of the tunnel air. The data of Brinich
and Diaconis (ref. 24) are useful in this connection in a comparison
with recent data obtained by Brinich (ref. 26). The main difference
in the conditions under which the two sets of data were obtained is in
a modification to the air-supply chamber of the lLewis 1~ by 1-foot
variable Reynolds number wind tunnel to improve the turbulence level
of the flow entering the nozzle. These data are shown in figure 9. The
increase in the Reynolds number for transition from the latest data
(ref. 26) is quite evident. Within the individual sets of data a trend
of increasing Reynolds number for transition with increasing Reynolds
number per inch can be detected. This is the same trend that Ross
(ref. 27) observed on a cone tested in the same wind tunnel. A more
detailed study of transition on a cone in this tunnel (ref. 28) has
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indicated not only an overall change in turbulence level between the

two sets of data associated with the tunnel modification but in addition
secondary changes in turbulence level resulting from variations in
Reynolds number per inch.

Certain of the datum points indicated in figure 9 are affected by
the leading-edge shock as reflected from the tunnel wall and these points
are given little weight. Other data points obtained from reference 26
(Ry of 260, 1,500, and 8,000) appear to be affected by a wave impinging
on the surface. This result is apparently attributable to an imperfection
of the nozzle.

On the basis of the correlation presented in figures 8 and 9 a
variation in leading-edge thickness by a factor of 3 would be expected
to give a change in the transition Reynolds number of about 50 percent
which is more than adequate to explain the snomalies shown on table I.

Probe effects.- Little is known about the influence of the probes
on transition; however, the main effects on the boundary layer of the
relatively small probes used in this investigation appear to be in the
details of the measured profiles rather than in the evaluation of whether
the boundary layer is laminar or turbulent. A discussion of this latter
effect is presented in appendix B to this paper.

Tests at a Lower Pressure Level

A few tests were run on the smooth cylinder in the steel and Invar
nozzles at a Reynolds number per inch of 0.26 x 100 (pt ~ 25 atmospheres).

These data are not as comprehensive as the data presented in figure 6
and thus do not justify presentation. Transition, according to these
total-pressure profiles, was found to occur between a Reynolds number of
b X 100 and 4.5 x 106 (corresponding to Xrp from -16 to -18 inches) in
both the steel and the Invar nozzles. The wall temperatures for these
tests are expected to be slightly below the values estimated for the
higher pressure tests because of the reduced heat transfer.

Comparison With Other Results

The tests by Korkegi (ref. 29) at M, = 5.8 on an insulated flat
plate and Iee (ref. 30) at Mach numbers up to 5.0 on a hollow cylinder
are perhaps the only wind-tunnel tests for boundary-layer transition on
models with essentially zero pressure gradient at Mach numbers approaching
those of the present investigation. However, it is difficult to compare
the results of these investigations with the present results since their
surface heating effects are different from those of the present tests
and their model-leading-edge thicknesses are not given. Nevertheless,
since there is a dearth of high Mach number transition data, the results
from these sources are presented.
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In Korkegi's experiments (ref. 29) the Reynolds number per inch

varied from about 0.07 x 109 to 0.23 x 106 and this higher value is
comparable to the values of Reynolds number per inch in the present
tests and he obtained a Reynolds number for transition that was greater

than 5.0 X lO6 though how much greater is unknown. In the tests by Ilee
(ref. 30) the Mach number was varied from 2.15 to 5.0l with a corre-

sponding variation in Reynolds number per inch from roughly 0.3 X 106

to 0.07 X 106 (constant supply pressure). The Reynolds number per inch
at M, = 5.0 is l/h to 1/5 the Reynolds number per inch of the present
tests. Whether heat transfer was present is not stated, although the
data were obtained in an intermittent tunnel with short test durations
(approximately 35-second runs) and some heat transfer from the model to
the boundary layer might occur. Iee's results show the transition
Reynolds number in general to decrease with increasing Mach number to

a value of about 106 at Mo = 5, with a scatter of about +20 percent. A
different cylinder was used for the tests at the high Mach numbers so
that 1t cannot be assumed that the leading-edge thickness was constant
for all the tests.

CONCLUDING REMARKS

The Reynolds number for transition on the outside of a hollow
cylinder has been investigated at a Mach number of 6.9 in the ILangley
11-inch hypersonic tunnel. In these tests there was heat transfer from
the boundary layer to the wall. The ratio of wall temperature to free«
stream temperature T,;/T. was believed to be an average of about 6.6

at the measuring stations whereas TW/Tw would be expected to be

about 9.0 for the laminar boundary layer on an insulated plate under the
same conditions. The nature of the boundary layer was determined from
impact pressure surveys through the boundary layer.

The data obtained at a Reynolds number per inch of 0.3L4 X 106, with
a leading-edge thickness varying between 0.001 inch and 0.003 inch
around the circumference of the leading edge, in a portion of the nozzle
which surveys indicated to have a small Mach number varilation, showed
the transition Reynolds number was between 4 x 10° and 6 x 100. When
the cylinder protruded into a region of the nozzle with a considersble
negative pressure gradient, the Reynolds number for transition appeared

to approach 8 X 10% for one set of data.

At a Reynolds number per inch of 0.26 X lO6 the Reynolds number for

transition varied from about U X lO6 to 4.5 X 1c6. However, there were
considerably fewer tests made at this lower value of Reynolds number per
inch.
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From a correlation of results obtained at lower Mach numbers (Mach
numbers in the range 2.0 to 4.5) leading-edge thickness and free-stream
Reynolds number per inch appear to be important considerations in flat-
plate transition results. Results from various installations would not
appear to be comparable unless these factors are taken into account. At
a given Mach number it appears that the Reynolds number based on leading-
edge thickness is a significant parameter that must be considered in
comparisons of flat-plate or hollow-cylinder transition data from various
facilities.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., February 9, 1956.
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APPENDIX A
THEORETICAL BOUNDARY-IAYER PROFILES

In order to determine the effect of the various variable or
imperfectly known conditions on the profiles to be examined, theoretical
calculations of the effects of some of these conditions were made.

Effect of Wall Temperature on lLaminar Profiles

In order to assess the effect of various wall temperatures on the
shape of the total-pressure, Mach number, and velocity profiles on the
laminar boundary layer, calculations were made by the Crocco method as
presented by Van Driest (ref. 16) for free-stream conditions close to
those of the present tests. The surface was assumed isothermal with a
constant-pressure flow field, and the Prandtl number and specific heats
were taken as invariant through the boundary layer. The computations
were carried out to a velocity ratio in the boundary layer of 0.999. The
results of these calculations are shown in figure 10. Qualitatively,
for the range of surface temperatures shown, the effect on the general
profile shapes of changes in surface temperature is small.

Effect of Prandtl Number on Laminar Profiles

In order to assess the effect of various Prandtl numbers on the
shape of the total-pressure, Mach number, and velocity profiles on the
laminar boundary layer, calculations were again made according to
reference 16. The results are presented in figure 11. The assumptions
are the same as in the preceding paragraph except that the plate is
assumed to have an insulated surface. Again for the present purposes
the effect of Prandtl number is found to be minor.

Effect of Exponent in Power Law for Velocity on Profile Shape

If the linear velocity profile is assumed to approximate the
velocities in a laminar boundary layer (see figs. 10 and 11) and the
turbulent boundary layer is represented by a velocity varying as the
1/6 to 1/7 power of distance fram the surface of an insulated plate
(refs. 29 and 31), the pitot pressure, Mach number, and velocity profiles
shown in figure 12 are obtained for g Prandtl number of 1.0.
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APPENDIX B
PROBE EFFECTS

The impact pressure and velocity profiles presented in figure 6
indicate two regions of disagreement between the laminar theory and the
experimental results that were classed as laminar: the first is near
the model surface (best shown by the velocities); the second is near the
outer edge of the boundary layer (shown by the impact-pressure results).

A probe situated very near a wall can introduce errors of various
sorts in the measured pressures. Among these are the following:

(a) Distortion due to the existence of high velocity gradients near
the wall ’

(b) Viscous effects at the probe nose resulting because the Reynolds
numbers in the subsonic part of the laminar boundary layer can be several
orders of magnitude reduced from free-stream values (illustrated by
fig. 13).

(¢) Initiation of separation resulting from the presence of the
probe (as observed by Morkovin and Bradfield, ref. 32).

The measurements of Taylor (ref. 33) using Stanton type surface tubes
and von Doenhoff (ref. 34) using flattened~-tip total-pressure tubes in
contact with the surface bear on the overall effect of all these factors
on the measured pitot pressure. Their results indicate that the indicated
impact pressure in the present tests can be 10 to 15 percent higher
than boundary-layer theory would give. This increase in impact pressure
results in an indicated increase in u* of perhaps 0.15 or 0.2, which is
the magnitude of the effects shown in figure 6(a) by the data taken near
the wall,

In addition to the effects previously discussed, attention is
directed to figure 6(b) (steel nozzle, circle and square symbols) and
figure 6(d) (steel nozzle, circle symbol), where the distortion of the
profile extends into the supersonic portion of the boundary layer.

This effect is apparently caused by the onset of transition and resembles
an effect shown in certain of the profiles presented by Korkegi (ref. 29,
fig. 24) and is not attributable in its main features to the influence

of the probe. Transition as shown by this profile in figure 6(d) is
considered to be slightly more advanced than that of figure 6(b); however,
from a comparison with the theoretical laminar profiles, in both cases
transition is considered to be in the incipient stage.
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The deviation of impact pressure from the theory near the outer edge
of the boundary layer (fig. 6(a) steel nozzle, especially) may be due
partly to the finite thickness of the leading edge. Qualitatively, such
deviations as this were found by Bradfield, Decoursin, and Blumer
at M, = 3.05 (ref. 25, fig. 6) to be due to increasing the leading-edge
thickness. Another possible explanation is an inadequacy in flat-plate
theory as applied to a cylinder and, in addition, there are certain terms
in the solution to the boundaryllayer equations which can be significant

near the outer edge of the boundary layer and which were neglected in the
" computations of the theory.
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TABLE T.- SUMMARY OF RESULTS FROM STEEL AND INVAR NOZZLES

R
[M = 6.9; ?X = 0.34 X 106 per inchJ _

. . Surface Type of
Figure Ry XLE, in. condition boundary layer Symbol
(a) Steel Nozzle
(10.8 Tape Laminar '®)
-11.2 Smooth Laminar .
6(a) | k.1 x 100|<-11.2 |Smooth |Laminar O
-11.1 |Knurled |[Ieminar A
-11.0 |Knurled {Laminar N
C11.2 Knurled Turbulent N
-11.2 |[Knurled [Turbulent J4|
6 -11.2 |Smooth Transitional A
6(v) | 6.2 x 10 Tape Incipient transition e}
Smooth Incipient transition 0
Knurled Laminsrl O
Knurled Transitionall 0
Smooth Transitionall O
6(0) 7.1 X Smooth Turbulentd O
Smooth Turbulent Ei
Smooth Turbulent
6(a) | 8.1x Knurled |Incipient transitionl| O
Knurled |Turbulentl O
Knurled |Turbulent O
6(e) 9.0 X Smooth Turbulent 0
6(f) [10.1 x Knurled |Turbulent O
(b) Invar Nozzle
1
6 b1 x 106 -12.0 | Smooth Turbulent O
(2) -12,0 |{Smooth Laminarl 0
-12.0 |Smooth Turbulent O
6(b) | 6.2 x 106(¢-18.0 |smooth |Transitionall a
-18.0 |Smooth Turbulentl O
614-18.0 | Smooth Turbulent O
6(a) | 8.1x 10 {-2&.0 Smooth  |Turbulent ™

lAnomalous cases.

21
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+Range of model leading-edge locations
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Figure 1.- Mach number variation in steel nozzle at two pressure levels
(60 seconds after start of test run).
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Figure 6.- Impact pressure and velocity distributions in boundary layer.
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Figure 6.- Concluded.
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Figure 7.~ .The Reynolds numbers for transition on hollow cylinders and flat
plates as a function of Reynolds number per inch and leading-edge
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